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Correction

ENGINEERING
Correction for “Computer simulations suggest that prostate en-
largement due to benign prostatic hyperplasia mechanically im-
pedes prostate cancer growth,” by Guillermo Lorenzo, Thomas
J. R. Hughes, Pablo Dominguez-Frojan, Alessandro Reali, and
Hector Gomez, which was first published January 7, 2019; 10.1073/
pnas.1815735116 (Proc. Natl. Acad. Sci. U.S.A. 116, 1152–1161).
The authors note that Eq. 1 on page 1158 appeared incor-

rectly. The corrected equation appears below.
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aDepartamento de Matemáticas, Universidade da Coruña, 15071 A Coruña, Spain; bDepartment of Civil Engineering and Architecture, University of Pavia,
27100 Pavia, Italy; cInstitute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712-1229; and dSchool of
Mechanical Engineering, Purdue University, West Lafayette, IN 47907
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Prostate cancer and benign prostatic hyperplasia are common
genitourinary diseases in aging men. Both pathologies may coex-
ist and share numerous similarities, which have suggested several
connections or some interplay between them. However, solid
evidence confirming their existence is lacking. Recent studies
on extensive series of prostatectomy specimens have shown
that tumors originating in larger prostates present favorable
pathological features. Hence, large prostates may exert a pro-
tective effect against prostate cancer. In this work, we propose
a mechanical explanation for this phenomenon. The mechan-
ical stress fields that originate as tumors enlarge have been
shown to slow down their dynamics. Benign prostatic hyper-
plasia contributes to these mechanical stress fields, hence fur-
ther restraining prostate cancer growth. We derived a tissue-
scale, patient-specific mechanically coupled mathematical model
to qualitatively investigate the mechanical interaction of prostate
cancer and benign prostatic hyperplasia. This model was cal-
ibrated by studying the deformation caused by each disease
independently. Our simulations show that a history of benign pro-
static hyperplasia creates mechanical stress fields in the prostate
that impede prostatic tumor growth and limit its invasiveness.
The technology presented herein may assist physicians in the clin-
ical management of benign prostate hyperplasia and prostate
cancer by predicting pathological outcomes on a tissue-scale,
patient-specific basis.

prostate cancer | benign prostatic hyperplasia | mathematical
oncology | patient-specific | isogeometric analysis

Despite its small size and supporting role in the male gen-
itourinary system, the prostate is the site of two major

pathologies in older men: prostate cancer (PCa) and benign
prostatic hyperplasia (BPH) (1). PCa is almost always an adeno-
carcinoma, a form of cancer that originates in epithelial tissues
with glandular organization, for instance, the prostatic tissue in
charge of producing certain substances of semen. Currently, PCa
is the second most common cancer and the fifth leading cause
of death from cancer in men worldwide, with an estimated 1.1
million new cases and 307,000 deaths in 2012 (2). PCa is usu-
ally diagnosed and treated when it is still localized within the
prostate (1). The majority of PCa cases originate in the periph-
eral zone (PZ) of the prostate (70%), but PCa can also arise in
the transition zone (20%) and in the central zone (10%). BPH
consists of the pathological enlargement of the prostate with age,
with a prevalence increasing from 50% in men in their 50s to
about 70% in men in their 70s (3). This condition may arise in
the transition zone or the periurethral glands (1). The growing
tissue may obstruct urinary and ejaculatory flow, hence caus-
ing bothersome lower-urinary tract symptoms. As BPH does not
develop in the PZ, the glandular prostate is segmented into two
zones in radiological studies: the PZ and the central gland (CG),
which contains the central, transition, and periurethral zones (1,
4, 5). The CG has a larger and denser stromal component that

becomes more compact during BPH, which results in an overall
lower signal intensity in T2-weighted magnetic resonance (MR)
images. However, the signal intensity of the CG is usually rather
heterogeneous due to the varying proportions of stromal and
glandular hyperplasia (1, 4–7).

Beyond anatomical location, BPH and PCa possess other simi-
larities (1, 8, 9). At the epidemiological level, both diseases affect
older men, have increasing incidence with age, and frequently
coexist in the same patient. These pathologies may induce lower-
urinary tract symptoms and increase serum levels of prostatic
specific antigen (PSA), a prostate activity biomarker used in PCa
diagnosis and staging. Additionally, PCa and BPH share some
genetic alterations, are hormone dependent, have been corre-
lated with prior inflammation, and might be part of the metabolic
syndrome. Despite the evidence suggesting links between PCa
and BPH, the relationship between these diseases has been
under continuous debate in the medical community due to the
existence of contradictory studies and the scarcity of research
thoroughly confirming the proposed hypothetical links (8, 9).
Gaining knowledge about the connection between PCa and BPH
would challenge the current clinical standards and potentially
enhance treatment and prevention of both diseases.

Significance

Benign prostatic hyperplasia (BPH) is a common disease in
aging men that causes the prostate to enlarge progressively.
Men with larger prostates tend to harbor prostatic tumors
with more favorable features. The underlying mechanisms
that explain this interaction between BPH and prostate can-
cer (PCa) are largely unknown. Here, we propose that BPH
may mechanically impede PCa growth by producing increas-
ingly intense mechanical stresses in the prostate over time,
which are known to slow down tumor dynamics. To explore
this hypothesis, we ran a qualitative simulation study using an
extension of our mathematical model of PCa growth includ-
ing the mechanical deformation of the prostate under BPH
and PCa. The proposed mechanism suggests relevant shifts in
clinical management of PCa and BPH.
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The biopsy detection rate of PCa in large prostates is known to
be lower than in small prostates (10–12). This low detection rate
has been attributed to various artifacts, such as sampling errors
and a biopsy selection bias in patients with increasing PSA, possi-
bly caused by BPH (10, 13, 14). However, it appears that neither
increasing sampling nor using more advanced medical imaging
to perform biopsy has leveled the detection rate across prostate
volume groups (11, 12, 15, 16). Recent studies on large series
of radical prostatectomy specimens show that tumors arising in
larger prostates present favorable pathological features, such
as lower aggressiveness measured with the Gleason score (1),
smaller tumor volume, and lower risk of extraprostatic extension
or seminal vesicle invasion (10, 17–21). These studies provide
solid evidence to suggest that large prostates may exert a protec-
tive effect against PCa, but the underlying mechanisms are not
known.

Here, we propose a mechanical explanation for this phe-
nomenon: BPH exerts an inhibitory effect on PCa growth due
to the accumulation of mechanical stress. The rapid overpro-
liferation of cancerous cells leads to high cell densities in their
confined microenvironment within the harboring tissue. As a
result, tumors develop a high compressive hydrostatic stress state
in their interiors and exert outward forces as they grow. These
forces deform the neighboring tissues, generating stress fields
aimed at resisting the mechanical load imposed by tumor growth.
This phenomenon is known as the tumor mass effect (22–28).
In turn, these mechanical stress fields are known to exert an
inhibitory effect on tumor growth both directly, by slowing down
tumor dynamics, and indirectly, by deforming and collapsing the
local vasculature in the tumor region. BPH creates a compres-
sive hydrostatic stress state within the CG and outward forces
that deform the PZ (1, 4, 5). Additionally, the confinement of
the prostate in the pelvic area further contributes to the internal
mechanical stress fields because the surrounding tissues resist the
pathological deformation of this organ. Here, we show that, as
the CG enlarges over time, the mechanical stress fields created
by BPH intensify and reach larger values than those created by
the tumor itself. Hence, BPH may also exert an inhibitory effect
on PCa growth but its impact has been overlooked. Indeed, if
clinically validated, this mechanism may produce a major change
in BPH treatment. The current paradigm aims at reducing the
CG volume to alleviate BPH symptoms via surgery or medication
(1). According to the proposed mechanism, this would reduce
the mechanical stresses in the prostate and hence promote the
growth of coexisting PCa. This would put the patient in a danger-
ous predictive scenario, especially if the tumor was not previously
diagnosed.

To analyze whether enlarged prostates may provide protection
against PCa growth, we need to determine whether the stress
induced by BPH is enough to significantly produce an inhibitory
effect on PCa. This fundamentally requires a 3D, anatomically
faithful, mechanical model of the prostate. The amount by which
the growth rate of the tumor decreases with stress may be esti-
mated from experiments in the literature. To perform this study,
we derive a tissue-scale, patient-specific mechanically coupled
mathematical model for PCa growth and perform a series of
computer simulations. The study and design of mathematical
models to forecast the evolution of tumors using computer sim-
ulations have given rise to the field of mathematical oncology
(29–31). These models aim at complementing the current clinical
practice in oncology by assisting physicians in better estimating
disease progression and designing optimal treatment schemes. In
particular, several mathematical models have incorporated the
tumor mass effect to improve the prediction of the growth of var-
ious types of cancers (32–38). Fig. 1 depicts the geometry of the
prostate used in our simulations, which we extracted from the
MR images and anatomical segmentations of a patient suffering
from PCa and BPH.

Fig. 1. Patient-specific local anatomy of the prostate. From a radiological
perspective, the prostate is divided into central gland (CG) and peripheral
zone (PZ). BPH takes place in the CG and most cases of PCa arise in the PZ.
We extracted the geometry of the patient’s prostate and CG from their cor-
responding segmentations provided on axial T2-weighted MR images. The
volumes of the prostate, CG, and PZ at MRI date are 52.81 cc, 33.15 cc, and
19.66 cc, respectively. The major diameters of the prostate at MRI date have
a length of 53.49 mm, 38.35 mm, and 52.01 mm in lateral, anteroposterior,
and craniocaudal directions, respectively.

In this work, we extend our previous model of organ-confined
PCa growth (39, 40) to include the equations of mechanical equi-
librium and define the coupling terms between them and tumor
dynamics. As organ-confined PCa growth can be seen as an
evolving interface problem, we leverage the phase-field method
(41) to account for the coupled dynamics of healthy and tumoral
tissue. Our model also estimates PSA dynamics at tissue level by
computing the serum concentrations of this biomarker produced
at healthy and cancerous regions per unit volume of prostatic tis-
sue (39). Following previous mechanically coupled approaches
(32–38), we assume that the deformation of the prostate is a
quasistatic phenomenon and we model prostatic tissue as a lin-
ear elastic, heterogeneous, isotropic material. As CG is normally
stiffer than PZ in older men, we set a higher Young modu-
lus in the CG (1, 4–7, 42–45). The confinement of the prostate
in the pelvic region is modeled with Winkler-inspired bound-
ary conditions on the external surface of the organ, while free
displacement is imposed along the urethra. BPH and PCa are
modeled as pressure terms in the constitutive equation of the
prostatic tissue acting within the CG and the tumor, respectively.
Finally, the inhibitory effect of the mechanical stress fields is
estimated with a global factor that slows down tumor dynamics.
This coefficient depends on a measure of the loading conditions
and the stored elastic energy, so we choose a combination of the
Von Mises stress and the hydrostatic stress for this purpose (46).
The range of values of this inhibitory factor is adjusted to match
the experimental and clinical observations in previous studies
of tumor growth (23–28, 32–35). See Materials and Methods for
more details on the model.

Results
Deformation of the Prostate Due to BPH. Our model predicted that
BPH produces the volumetric expansion of the prostate in the
perpendicular direction to the CG border, as depicted in Fig. 2
(SI Appendix, Fig. S1). The PZ was pushed outward from the bor-
ders of the growing CG against the prostate external surface and
experienced a very slight shrinkage, as the boundary conditions
partially enabled outward displacement.

The extremal values of the displacements were attained at the
CG borders that are closer to the external surface of the prostate.
The maximum total displacement was 0.74 mm. The urethra was
displaced posteriorly and its diameter was virtually unaltered.

The hydrostatic stress was compressive within the CG
(−0.20 kPa to −0.13 kPa) and negligible within the PZ (SI
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A B

Fig. 2. Deformation of the prostate caused by BPH over 1 y. (A) Length of the displacement field vector over original anatomy at t = 1 y. (B) Original and
deformed geometries of the prostate at t = 1 y.

Appendix, Fig. S1). Positive hydrostatic stress appeared in thin
PZ regions between the CG border and the prostate boundary,
where tension accumulated as the CG expanded. The Von Mises
stress was negligible within the CG, except along the urethra
(0.27–0.53 kPa). Within the PZ, the Von Mises stress peaked
near the borders of the CG (0.20–0.33 kPa) and decreased
toward the external surface of the prostate (0.07–0.17 kPa),
depending on the distance between them (SI Appendix, Fig. S1).

Deformation of the Prostate Due to PCa. We considered three
artificial tumors placed in characteristic locations within the
prostate: the basal PZ, the apical PZ, and the CG. Each tumor
had ellipsoidal geometry with one semiaxis measuring 4 mm
and the others 3 mm. The largest dimension was oriented in
anteroposterior direction. We selected the parameters that reg-
ulate tumor dynamics so that these tumors were aggressive and
showed the typical morphologies of localized PCa: massive and
fingered (39). Fig. 3 shows the growth of these artificial tumors
and how they deformed the patient’s prostate (SI Appendix,
Fig. S2).

All tumors started growing with the massive morphology,
which is characteristic of small prostatic cancers. The PZ tumors
soon adjusted their geometry to the anatomy of the patient’s
prostate boundary (Fig. 3 A1 and A2 at t =0.3 y). Due to the
reduced thickness of the PZ around the CG in the patient’s
prostate, these PZ tumors invaded the CG early (t < 0.1 y).
The CG tumor took longer to reach the PZ and invade it (t ≈
0.3 y). As every tumor grew in size, the intratumoral nutrient
concentration decreased. This shortage cued a shape instability
that progressively adjusted the tumors to a fingered or lobular
morphology, hence ensuring a spatial distribution of nutrient
that sustained tumor growth (39). This phenomenon happened
by t =0.4 y for the tumor in basal PZ, by t =0.35 y for the
tumor in apical PZ, and by t =0.55 y for the CG tumor.
The shift in morphology arrested tumor growth momentarily
(<0.15 y) and even reduced the CG tumor volume by 12.2%.
However, tumors grew faster and more extensively after this
phenomenon.

The CG tumor grew faster and larger than the PZ tumors,
whose growth rates and initial volumes were similar. Because the
tumor in apical PZ underwent the change in morphology earlier,
its volume was larger than that of the basal PZ tumor for the
second half of the simulation. The final volumes of the basal PZ
tumor, the apical PZ tumor, and the CG tumor were 5.43 cc, 6.82
cc, and 9.02 cc, respectively.

Tumors produced a local swelling deformation. The outermost
tumoral structures produced the greatest displacements, which
ranged between 0.65 mm and 1.15 mm and created noticeable

smooth lumps on the external prostatic boundary, especially in
the PZ (Fig. 3 B1, B3, C1, and C3 and SI Appendix, Fig. S2).
The CG tumor barely deformed the posterior aspect of the PZ.
During the shift in tumor morphology, the displacement fields
redistributed and decreased globally between 23% and 31%, tak-
ing 0.3–0.6 y to recover during fingered growth. The urethra was
displaced away from the tumor and also constricted (max. 0.44–
0.75 mm), mainly in the segments circumvented by the fingered
tumors.

The hydrostatic stress was compressive within the tumors, with
lower values in the PZ (−0.75 kPa to −0.33 kPa; SI Appendix,
Fig. S2). Around the tumors, the hydrostatic stress was compres-
sive in the PZ, with a minimum of −0.08 kPa, and tensile in
the CG, with a maximum of 0.10 kPa. Maximal tensile hydro-
static stress between 0.67 kPa and 0.88 kPa was obtained on
the most constricted contours of the urethra and was accompa-
nied by compressive values with minimum between −0.52 kPa
and −0.38 kPa on the urethral contours in a perpendicular direc-
tion to the constriction. High tensile hydrostatic stress was also
registered when tumors grew near the prostate external surface
(up to 0.33 kPa in PZ and 0.48 kPa in CG). Far from the tumor,
the hydrostatic stress was negligible.

The Von Mises stress ranged between 0.05 kPa and 0.25 kPa
inside the tumor and it was higher around the convex side of
the tumor borders, with values typically between 0.45 kPa and
0.60 kPa (SI Appendix, Fig. S2). Maximal values of the Von
Mises stress were obtained in the healthy tissue between tumor
branches (0.60–0.70 kPa), within intricate concave regions of
fingered tumors (0.60–0.75 kPa), within and around the tumor
near the border between the PZ and the CG (0.41–0.87 kPa),
in healthy tissue compressed by the tumor against the prostate
external surface (0.50–0.92 kPa), and on the contour of the most
constricted segments of the urethra (0.75–1.27 kPa). The healthy
tissue enclosed by tumor branches had Von Mises stress values
within the intratumoral range. Massive tumors tended to build
up greater values of the Von Mises stress around them. We
observed that the Von Mises stress was slightly higher and the
distortion rim was thicker in the CG.

BPH Impedes PCa Growth. After the deformational study of the
prostate under the effect of BPH and PCa to calibrate our
model, we analyzed how the patient’s history of BPH affected
PCa growth. We ran two simulations: one without consider-
ing BPH and another including it. Fig. 4 depicts the growth of
the tumor in both scenarios, while Fig. 5 shows the deforma-
tional states (SI Appendix, Figs. S3 and S4). The geometry of the
patient’s tumor was extracted from the same MR dataset used
to obtain the prostate anatomy. We estimated the stress state
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A1 B1 C1

A2 B2 C2

A3 B3 C3

Fig. 3. Deformation of the prostate over 1 y produced by a tumor originated on basal PZ (A1–C1), apical PZ (A2–C2), and median CG (A3–C3). (A1–A3)
Tumor growth over the original prostate geometry. (B1–B3) Length of the displacement field vector over original anatomy at t = 1 y. The contour of the
tumor is depicted with black curves. (C1–C3) Original and deformed geometries of the prostate at t = 1 y.

of the prostate caused by years of developing BPH before PCa
detection at the MR date, σ0. This information was introduced
as a prestress to compute the baseline hydrostatic and Von Mises
stresses in the mechanotransductive coefficient adjusting tumor
dynamics (Materials and Methods). Hence, for this purpose,
σ=σ0 +σ1, where σ1 represents the additional stresses devel-
oped since the detection of PCa at MR date. All stress values
quoted are for σ.

The simulation without BPH rendered similar results to the
PZ tumor cases in the previous section. The patient’s tumor was
located in the left basal aspect of the PZ and had a volume
of 0.51 cc. Initially, this tumor grew with massive morphology,
early invading the CG and progressively developing two lobes
of preferential growth in the anteroposterior direction. This
geometry contributed to an early shift in morphology between
t =0.3 y and t =0.4 y, during which tumor growth was min-
imally slowed down. Afterward, the tumor grew faster with

fingered morphology, invading all of the prostate side where it
had originated from median to basal height in the craniocaudal
direction.

The final volume of the tumor was 6.32 cc. The urethra was
displaced anteriorly to the patient’s right and the maximal con-
striction was 0.30 mm. The distribution and magnitude of the
displacement, hydrostatic stress, and Von Mises stress fields were
also analogous to their counterparts in the simulations for the
PZ tumors in the previous section. The maximum total displace-
ments were in the range 0.85–1.05 mm. The shape instability
reduced displacements by 17.3% and it took until the end of the
simulation for them to recover (t ≈ 0.9).

The inclusion of the patient’s history of BPH produced major
changes in tumor growth and the prostate deformational state.
There was no shift in morphology in this simulation. Instead, the
tumor grew as a continuous mass that progressively surrounded
the CG in the anteroposterior direction at the basal level of the

Lorenzo et al. PNAS | January 22, 2019 | vol. 116 | no. 4 | 1155
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A1 B1

A2 B2

Fig. 4. Growth of the patient’s tumor over 1 y without the influence of BPH (A1 and B1) vs. considering the patient’s history of benign prostatic enlarge-
ment (A2 and B2). (A1 and A2) Tumor growth over the original prostate geometry. (B1 and B2) Time history of tumor volume (solid line) and serum PSA
(dashed line).

PZ. The invasion of the CG was minimal and involved only the
border with the PZ. The tumor growth rate was considerably
lower than in the simulation without BPH and the final volume
of the cancerous mass was 0.66 cc.

BPH globally dominated the deformation of the prostate by
producing a volumetric expansion. The tumor produced a local
swelling deformation that was noticeable on the external surface
of the PZ. The urethra was displaced posteriorly to the patient’s
right and its diameter was practically unchanged. The deforma-
tion of the prostate caused by this combination of BPH and PCa
produced maximum global displacements between 0.86 mm and
1.16 mm. These values were attained on the outer region of the
tumor within the PZ. On the opposite side of the cancerous mass,
the displacement field created by BPH within the CG was barely
modified by the presence of the growing tumor.

The patient’s history of BPH produced a highly compressive
hydrostatic stress field in the prostate, ranging from −2.90 kPa
to −2.20 kPa within the CG and from −0.60 kPa to −0.25 kPa
within the PZ (SI Appendix, Fig. S4). The tumor contributed
to increasing the hydrostatic stress in the PZ, reaching min-
ima between −0.95 kPa and −0.70 kPa within the tumor and
between −3.70 kPa and −2.90 kPa next to the CG border. BPH
led to the accumulation of compressive stress all around the ure-
thra (−6.20 kPa to −3.00 kPa) and tensile stress at the PZ tissue
in the vicinity of the border between PZ and CG nearby the
prostate external boundary (2.00–5.90 kPa).

The accumulated deformation by BPH also raised the Von
Mises stress in the whole prostate (SI Appendix, Fig. S4). Within
the CG, it ranged from 0.10 kPa at inner tissue, far from both
the urethra and the external prostatic boundary, to higher val-
ues between 1.30 kPa and 1.80 kPa on the CG border. Within
the PZ, the Von Mises stress was maximal on the CG surface,
from 3.50 kPa to 5.00 kPa. The values of the Von Mises stress

then decreased toward the prostate exterior boundary, where it
ranged from 1.00 kPa to 2.50 kPa. The tumor locally increased
the Von Mises stress, reaching 1.70–2.65 kPa on its outer lateral
convex border within the PZ, within the tumor near its con-
cave border, and surrounding the tumor tips in the craniocaudal
direction. The intratumoral values were between 1.50 kPa and
2.20 kPa. The maximum Von Mises stress was observed along the
urethra, especially along the anterior and posterior walls, ranging
from 3.00 kPa to 8.00 kPa.

Discussion
In this work, we provide a mechanical explanation to understand
why large prostates may exert a protective effect against PCa (10,
17–21). Using computer simulations based on a mechanically
coupled mathematical model of organ-confined PCa, we show
that a patient’s history of BPH creates a deformational state that
impedes tumor growth. Our results show that BPH promoted a
highly compressive hydrostatic stress state within the CG and dis-
torted the whole prostate, especially the PZ, hence increasing the
Von Mises stress. The combination of this deformational state
with the mechanical stress fields created by PCa impeded tumor
growth, which showed a favorable pathological evolution charac-
terized by a slow growing rate and the lack of invasive demeanor.
This resulted in a smaller tumor volume, which is more likely to
have a lower Gleason Score (47, 48) and hence be less aggres-
sive. PCa was unable to grow beyond a certain thickness that
would have motivated a shape instability toward a more invasive
morphology, which would facilitate invasion of seminal vesicles
or extracapsular extension. Instead, the deformational state of
the prostate controlled the tumoral volume and permitted its
development only along the less distorted and stressed direc-
tions. Increasing the Von Mises stress caused by both BPH and
PCa in the prostatic tissue between the tumor and the prostate
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A1 B1

A2 B2

Fig. 5. Deformation of the prostate over 1 y produced by the patient’s tumor without the influence of BPH (A1 and B1) vs. considering the patient’s history
of benign prostatic enlargement (A2 and B2). (A1 and A2) Length of the displacement field vector over original anatomy at t = 1 y. The contour of the
tumor is depicted with black curves. (B1 and B2) Original and deformed geometries of the prostate at t = 1 y.

external boundary would also contribute to prevent the tumor
from escaping the prostate.

The arrangement of tumor growth and geometry to its local
mechanical environment was also previously observed and mea-
sured in in vitro experiments (25, 49). These studies along with
our results highlight the major role of mechanical modulation of
the shape and size of growing solid tumors, which are key pieces
of information for clinical staging. Our results show that both
hydrostatic stress and Von Mises stress developed significant val-
ues and actively regulated PCa growth. The mechanical states
described by these stress measurements have been reported to
impede tumor growth both experimentally and clinically (23–28,
32–34). When the BPH history was introduced in the simulations
via σ0, we observed that the mechanical obstruction to tumor
growth was mostly driven by high Von Mises stress accumulated
in the PZ. Additionally, PCa growing in the CG would experi-
ence mechanical inhibition mostly driven by hydrostatic stress (SI
Appendix, Fig. S4).

To calibrate and test our mechanically coupled mathematical
model, we also studied the deformation of the prostate under
the development of BPH and PCa. Overall, our results in terms
of displacements and deformational features for BPH and PCa
agree with previous studies in the medical literature (1, 42, 50).
BPH produced the volumetric expansion of the prostate, with
slightly higher displacements craniocaudally and anteroposteri-
orly at the basal level. The compression of the PZ dampened the
displacement fields elsewhere. Simulation of BPH during several
years would also produce the constriction of the urethra, as cued
by the high hydrostatic stress in the surrounding CG.

PZ tumors deformed the outer posterior surface of the
prostate, which would be noticed by a physician during a digital
rectal examination (1). The CG tumor produced lower displace-

ments and a uniform and subtle deformation on the posterior
region of the prostate boundary. This is a common difficulty
in detecting CG cancers during digital rectal examination. The
constriction of the urethra along the segments circumvented
by the tumor is likely to produce lower-urinary tract symp-
toms. Even though the displacements decreased after the shape
instability, the volumes of the prostate, the CG, and the PZ
were barely modified because the tumor grew faster with the
fingered morphology. Consequently, milder displacement fields
expanded over a broader volume of the prostate. PZ tumors
grew slower because they accumulated higher compressive stress
and the PZ was globally more distorted when the tumor grew
against the prostate external surface and the CG border. PZ
tumors adapted their shape to overcome those obstacles, favor-
ing tumoral geometries that also anticipated the shape instability.
We also observed that our model correctly reproduced the
mechanical stress fields induced by a growing tumor as previously
described in the literature (22–28).

However, our model presents some limitations that deserve
further research. Our anatomic model of the prostate would ben-
efit from a more precise segmentation of the internal prostatic
zones accompanied by patient-specific mechanical characteriza-
tion. Likewise, a spatially varying definition of the mechanical
boundary conditions attending to the different tissues and organs
surrounding the prostate would contribute to rendering more
accurate predictions. These mechanical boundary conditions
play a major role in the accumulation of hydrostatic stress in
the prostate during the development of BPH, so future work
should also focus on quantifying this influence to better under-
stand the inhibitory mechanism presented herein. Our model
would also benefit from a more accurate formulation for BPH
(51–53) as well as for tumor growth and deformation (26, 33, 35,
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36, 38). The mechanotransductive term to adjust tumor dynamics
can be refined, for instance, by testing alternative formulations
or differentiating how mechanical stress affects tumor mobil-
ity, proliferation, and apoptosis (25, 27, 33). To overcome the
limitations of linear elasticity and obtain more accurate values
of displacements and stresses future studies should explore a
formulation accounting for geometric and material nonlinear-
ities and investigate alternative constitutive equations for the
prostate (28, 46, 54, 55). A poroelastic description of PCa growth
would also help to study the effect of mechanical deformation
on nutrient transport (26). This approach holds the poten-
tial to accurately investigate the heterogeneity of intratumoral
metabolism or test patient-specific drug administration to the
tumor in silico. To gain further knowledge on the mechanisms
of PCa growth using our model, we believe it would be valu-
able to investigate the mathematical properties of the equations
composing it, for example, analyzing solvability conditions, char-
acterizing parameter spaces, and studying the well-posedness of
the problem.

Finally, further validation using longitudinal series of clini-
cal data is required to corroborate the BPH-induced mechanical
inhibition of PCa. If validated, this mechanism may produce an
important shift in the clinical management of BPH. Our results
advise performing a comprehensive examination of the prostate
in men without PCa before prescribing BPH treatments or drugs
aimed at reducing the CG volume. Likewise, our results rec-
ommend a close follow-up of those patients with PCa receiving
these sorts of BPH drugs. Otherwise, the prostate volumetric
decrease could hazardously lower the mechanical stress fields
created by BPH and hence reduce their mechanical restraint on
PCa growth. Indeed, this could partially explain the higher pro-
portion of more aggressive cancers in the finasteride arm of the
Prostate Cancer Prevention Trial (56), arguably the most con-
troversial result of this milestone study on chemoprevention of
PCa (14, 18–20). Our research also calls for further courses of
treatment in alleviating BPH symptoms while maintaining a sig-
nificant stress level within the prostate for protection against
PCa. In the future, we intend to address this issue by extending
our model to incorporate the effect of drugs causing a prostate
volume decrease, such as dutasteride and finasteride (1, 56).
Additionally, we think that our model could be exploited to
improve the current technologies for deformable registration
of medical images (42) by providing a theory for the evolu-
tion of BPH and PCa. The resulting algorithms would be of
much interest for several applications within the clinical man-
agement of PCa on a tissue-scale, patient-specific basis, such as
the accurate follow-up of tumor growth during active surveil-
lance or the precise planning of surgery and other treatments
(39). Such technology could also help to detect PCa based on
the deformation of the prostate boundaries and the internal bor-
ders between prostatic regions (44, 57). Additionally, it could
guide biopsies to better stage and diagnose PCa. Comparing
the predictions of the model with new images and clinical data
could also help to discern whether the tumor is progressing
toward a more malignant behavior and to make clinical decisions
accordingly (39).

Materials and Methods
Patient Data. Anonymized patient data were obtained from the public
repository for PCa imaging data at the Initiative for Collaborative Computer
Vision Benchmarking website (i2cvb.github.io/) (58). Institutional review
board approval and informed consent were not required for this study.
We used the multiparametric MR image dataset obtained with a 3.0 Tesla
Siemens Magnetom Trio TIM scanner. Patient cohort description and details
on data acquisition have been previously described (59). For each biopsy-
confirmed patient, this database includes T2-weighted MR images; dynamic
contrast enhanced MR images; diffusion-weighted MR images; MR spectro-
scopic images; apparent diffusion coefficient maps; and the segmentations
of the prostate, the PZ, the CG, and the tumor by an experienced radiolo-

gist. For this research, we selected a patient aged 54 y at MR date who had
a large prostate of 52.81 cc harboring a localized tumor in the PZ.

Mathematical Model. Our modeling philosophy aims at developing tumor
growth models based on key phenomena and featuring a limited number
of representative parameters (30). This approach holds the potential for pre-
cise heterogeneous parameterization using available longitudinal clinical
and imaging data from patients and has proved successful in reproducing
and predicting various types of tumor growth (30, 32–34). As a preliminary
step in this direction, here we developed a mechanically coupled model for
patient-specific, organ-confined PCa growth and we leveraged it to perform
a study on the mechanical interaction between PCa and BPH using literature
data for parameter calibration.

Our model is described by the following equations:

∂φ

∂t
= M

(
Dφ∆φ−

1

τ

dF(φ)

dφ
+χs−Aφ

)
[1]

∂s

∂t
= Ds∆s + S− δφ− γss [2]

∂p

∂t
= Dp∆p +αh(1−φ) +αcφ− γpp [3]

∇ ·σ = 0. [4]

Eqs. 1–3 come from our previous model of organ-confined PCa growth (39,
40). Eq. 1 describes tumor dynamics using the phase-field method (41). The
order parameter φ takes values from 0 in healthy tissue to 1 within tumoral
regions, showing a thin diffuse interface in between. F (φ)= 16φ2 (1−φ)2 is
a double-well potential, which enables the stable coexistence of healthy and
cancerous tissue in our model. The last two terms in Eq. 1 describe nutrient-
driven growth and apoptosis (i.e., programed cell death), respectively. We
consider that tumor growth is driven by a generic nutrient s that follows
reaction–diffusion dynamics in Eq. 2. The reactive terms in Eq. 2 are the
nutrient supply, the consumption of nutrient by the tumor, and a natural
decay, respectively. Eq. 3 describes the reaction–diffusion dynamics of tissue
PSA p, defined as the serum PSA concentration leaked to the bloodstream
per unit volume of prostatic tissue (39). In Eq. 3, we consider that healthy
tissue and cancerous tissue produce p at rates αh and αc, respectively, and
the last term is a natural decay.

The mechanical stress fields generated by a growing tumor have been
shown to slow down its dynamics (23–28). Previous clinically oriented,
mechanically coupled models of tumor growth have incorporated this
phenomenon by means of a coefficient that exponentially decreases cell
mobility or net cell proliferation as mechanical stress fields intensify (30,
32–34). Following a similar strategy, in Eq. 1 we modeled the mechanically
induced inhibition of tumor growth throughout coefficient M, which we
define in Eq. 5. Mechanical stress can be decomposed as the sum of hydro-
static stress σh (defined in Eq. 6), which tends to change the volume of the
stressed body, and deviatoric stress, which tends to distort it (46). The Von
Mises stress σv (46) (defined in Eq. 7) is a good measure of the distortional
strain energy around the tumor that has been widely adopted in mechani-
cally coupled models (32–34). However, σv is insensitive to hydrostatic stress,
which better describes the natural stress state within a growing region of tis-
sue, such as a tumor or the CG developing BPH (23, 24, 26). Hydrostatic stress
is also bound to increase globally during these growth processes because
the prostate is a confined organ (1). Therefore, we propose to combine σv

and the hydrostatic stress σh (46) in the definition of M following a similar
approach to that of multiaxial stress-based failure criteria,

M = e−β1(σv+β2|σh|), [5]

where

σh =
1

3
σ : I =

1

3
(σ11 +σ22 +σ33), [6]

σv=
(
σ

2
11 +σ

2
22 +σ

2
33−σ11σ22−σ22σ33−σ33σ11

+3
(
σ

2
12 +σ

2
23 +σ

2
13

))1/2
,

[7]

where σij with i, j = 1, 2, 3 are the components of the stress tensor σ, I is the
second-order identity tensor, and β1 and β2 are constants that were adjusted
to match the experimental and clinical results of previous studies on tumor
growth (23–28, 32–34). We use the absolute value of the hydrostatic stress
because both growth-induced compressive and tensile solid stresses have
been shown to impede tumor dynamics at tissue scale in vivo (23, 24).

We assume that PCa and BPH show sufficiently slow rates (1) to neglect
the inertial effects in the deformation of prostatic tissue. Hence, Eq. 4
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describes mechanical equilibrium as a quasistatic process. Linear elasticity
has been widely accepted to model mechanical equilibrium in living tis-
sue subjected to slow processes over short time scales (t∼ 1 y) (32–38, 46).
Hence, this paradigm provides a simple mechanical framework to compute
the stresses in Eq. 5 and perform our qualitative study on the mechanical
influence of BPH on PCa. The prostate is an histologically heterogeneous
organ: While the CG has a higher and denser stromal component, the PZ
has more abundant glandular elements with sparsely interwoven smooth
muscle (1, 5, 6). Benign enlargement of the prostate tends to make the CG
denser and more compact (1, 7). Therefore, the CG is normally stiffer than
the PZ in patients with PCa and/or BPH (42–45). The growing tumor induces
an internal compressive hydrostatic stress and exerts outward forces acting
on the tumor border (22, 24), so we modeled the tumor mass effect as

ptumor =−κφ. [8]

This assumes that κ is the magnitude of a constant compressive pressure,
which is admissible over short simulation times (32–34, 36, 37). Volumetric
growth due to BPH is usually modeled with an exponential function, but the
slow growth rates justify a linear approximation over periods ∆t∼ 1–10 y
(51–53). Hence, we modeled BPH as a linearly growing pressure acting only
on the CG,

pBPH =−K%
g∆t

VMRI
HCG (x), [9]

where K is the bulk modulus, g is the estimated linear volumetric growth
rate of the prostate due to BPH at MR date, VMRI is the volume of the
prostate as measured on T2-weighted MRI, ∆t is the time passed since the
date of MRI, andHCG (x)is a Heaviside function with value 1 in the CG and 0
elsewhere. The parameter % adjusts the value of the pressure pBPH to obtain
the estimated CG growth rate. Taking all of the considerations above, we
model prostatic tissue as a linear elastic, heterogeneous, isotropic material
whose constitutive equation is given by

σ =λ (∇ · u)I + 2µ∇su−κφI−K%
g∆t

VMRI
HCG (x)I, [10]

where σ is the stress tensor, λ and µ are the Lamé constants, u is the dis-
placement vector, and x is the position vector. The segmentation of CG and
PZ was extracted from our patient’s imaging data and mapped over the
quadrature points to define heterogeneous material properties (Fig. 1).

We computed tumor volume Vφ and serum PSA P as (39)

Vφ =

∫
Ω

φdΩ

P =

∫
Ω

pdΩ,
[11]

where Ω is the prostate segmented on the patient’s MR images.
Because we are focusing on localized PCa, we imposed zero-valued

Dirichlet conditions for φ all over the prostate boundary ∂Ω. We set natural
boundary conditions for s and p. The confinement of the prostate within the
pelvic area (1) was modeled with Winkler-inspired boundary conditions on
the external surface of the prostate, while free displacement was enabled
along the urethra; i.e.,

σn =−kwu in ∂Ω|exterior

σn = 0 in ∂Ω|urethra,
[12]

where n is the outer normal vector to ∂Ω and kw is constant.
The initial condition of the phase field, φ0, was an L2 projection of the

tumor segmentation extracted from the patient’s T2-weighted MR images
and mapped over quadrature points or was artificially modeled with an L2-
projected hyperbolic tangent field. The initial conditions for s and p were
approximated with linear functions based on φ0 (40). Linear elasticity allows
us to apply the principle of superposition and set zero-valued initial condi-
tions for the displacements; i.e., u0 = 0. This means that we are computing
only the displacements produced since the MR date.

To study how BPH mechanically influences PCa growth, we estimated the
stress state σ0 caused by the history of BPH before the detection of PCa at
MR date and leveraged it as a prestress state to compute M in Eq. 1. Hence,
for this purpose, σ =σ0 +σ1, where σ1 are the stresses developed since the
detection of PCa at MR date. To estimate σ0, we assumed that the volume
of the patient’s prostate was 20 cc at age 40 y (1, 3) and leveraged Eq. 4

with a negative value for g and ∆t = 14 y to approximate the undeformed,
healthy state of our patient’s prostate according to the standard anatomical
features (1). Because we are using linear elasticity, it suffices to reverse the
sign of the obtained displacements to yield u0 and then approximate σ0 as

σ
0

=λ
(
∇ · u0

)
I + 2µ∇su0−K%

g∆t0

VMRI
HCG (x)I, [13]

where g is now positive and ∆t0 = 14 y.
Parameter selection for Eqs. 1–3 has been previously discussed (39) and

it is provided in Table 1. We set the values of the Young modulus of PZ
and CG to EPZ = 3 kPa and ECG = 6 kPa, respectively (42–45). Because living
soft tissues have a high content of water (34, 37, 42), we set the Pois-
son coefficients νPZ = νCG = 0.40. We empirically calibrated β1 = 0.80 1/kPa
and β2 = 1.50 in agreement with the experimental and clinical observations
reported in previous studies on tumor growth (23–28, 32–34). We selected
κ= 2.50 kPa to produce displacements in the order of 1 mm. The analysis
of BPH and PCa deformation and the computation of the stress fields σ0

rendered g = 2.34 cc/y, %= 2.78, and kw = 0.23 kPa/mm. These values for g
and % reasonably agree with previous observations in the literature for our
patient characteristics (1, 3, 50–53).

Finally, we acknowledge that linear elasticity is an acceptable simplifi-
cation for studies featuring small strains and rotations and that the strain
values in the simulations shown in Figs. 3–5 are somewhat outside the
admissible range for linear elasticity in a few localized regions along the
tumor interface. Additionally, the prestress σ0 is just a gross estimate of
the stress state in the prostate due to the history of BPH previous to PCa
detection at MR. However, we are using the stresses only to compute the
mechanotransductive factor to adjust tumor dynamics. This study also fea-
tures other major sources of uncertainty beyond linear elasticity, such as
prostate and tumor segmentation, the PCa model itself, or the mechani-
cal boundary conditions. Still, our predictive simulations still qualitatively
reproduce the inhibiting effect on tumor growth caused by the tumor mass
effect and a history of BPH before PCa detection. To verify the validity of
the use of linear kinematic theory, we computed the symmetrical and skew-
symmetrical components of the displacement gradient with respect to the
initial configuration and determined that they were sufficiently small that
their products were not substantial compared with the linear terms and,
in particular, that the skew-symmetric components were negligible every-
where. Consequently, we feel confident that the computed results provide
physically meaningful information.

Numerical Methods. Since tumor growth and BPH are modeled as quasistatic
processes, we adopted a staggered approach to solve the equations in our
mathematical model. We calculated tumor growth at every time step, but
we updated the displacements only every two time steps. We performed
spatial discretization by means of a standard isogeometric Bubnov–Galerkin
approach using a 3D C1 quadratic nonuniform rational B-spline (NURBS)
space (39, 40, 60–62). Temporal integration in the tumor growth problem
was carried out with the generalized-α method (63, 64). This technique led
to a nonlinear problem in each time step, which we linearized using the
Newton–Raphson method. The resulting linear system was solved using the
generalized minimal residual method (GMRES) algorithm (65) with a diag-
onal preconditioner. We also used the preconditioned GMRES algorithm
to solve the quasistatic elastic problem. We chose a constant time step of

Table 1. List of parameters in Eqs. 1–3

Parameter Notation Value

Diffusivity of the phase field Dφ 200 mm2/y
Time scale for the phase field τ 0.01 y
Nutrient-induced tumor growth rate χ 600 L/(g· y)
Apoptosis rate A 600 1/y
Nutrient diffusivity Ds 5.47 · 103 mm2/y
Nutrient supply S 2.70 g/(L· d)
Nutrient consumption rate δ 2.75 g/(L· d)
Nutrient natural decay rate γs 1,000 1/y
Tissue PSA diffusivity Dp 200 mm2/y
Healthy tissue PSA production rate αh 6.25 (ng/mL)/(cc·y)
Tumoral tissue PSA production rate αc αc = 15αh

Tissue PSA natural decay rate γp 100 1/y
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0.002 y and the parameters in the generalized-α method were set as in
previous studies (40, 66).

Visualization. We used ParaView (67) to visualize and explore the results
of our simulations. We used the isovolume φ≥ 0.5 to represent the tumor,
which permitted us to study the evolution of PCa morphologies. From the
C1-continuous basis, we computed the stress fields pointwise. We identified
regions of interest for the stress fields in the simulations and isolated them
using appropriate geometric filters in ParaView. The stresses reported in the
text correspond to the range of values that best describe the stress field in
each region of interest.

Construction of the Prostate Mesh. Multiple methodologies permit the con-
struction of solid anatomic NURBS models (68, 69). Because the geometries
of the prostate and a solid torus are topologically equivalent, we leveraged
a parametric mapping algorithm (70, 71) to deform a torus solid NURBS
model to match with a patient-specific prostate surface model. We used
3DSlicer (72) to generate a triangular surface model of the prostate from
the contours of the organ and the urethra drawn on the T2-weighted

MR images, using the provided prostate segmentation as guidance. The
resulting surface was smoothed in MeshLab (73).

The original torus and prostate NURBS meshes were discretized with
32 × 32 × 8 elements along the toroidal direction, the cross-section cir-
cumferential direction, and the cross-section radial direction, respectively.
We globally refined the prostate mesh to 256 × 256 × 64 elements, using
standard knot insertion (61) to perform our simulations with a good level of
accuracy.
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